Tranzistor alebo zriedkavo polovodičová trióda je polovodičová súčiastka, používaná ako zosilňovač, spínač, stabilizátor a modulátor elektrického napätia alebo prúdu.
Použitie
Tranzistor je základným stavebným prvkom integrovaných obvodov a dá sa povedať, že najviac vyrobených tranzistorov je v súčasnosti práve v nich.
Výhodou tranzistorov oproti elektrónkam je až 1000x vyšší prúd ktorý znesú - tranzistory až do kiloampérov zatialčo elektrónky tak 10 A. Ale na druhej strane elektrónky znesú vyššie pracovné napätie, rádovo až kilovolty (vo vysielačoch rozhoduje napätie).
Druhy zapojenia
So spoločným emitorom (SE)
Zapojenie NPN tranzistora so spoločným emitorom je najčastejsie zapojenie, používané hlavne pri spínacích zapojeniach. Špeciálne na veľké výkony, keď nerozhoduje rýchlosť:
- Nízkofrekvenčné zosilňovače na reproduktory
- Riadenie elektromotorčekov
- Zopnutie žiaroviek TTL alebo CMOS obvodmi
So spoločným kolektorom (SK)
Druhé najčastejšie zapojenie. Používa sa na zníženie výstupného odporu niečoho analógového, napr. operačného zosilňovača alebo koncového zosilňovača pre reproduktory.
Darlingtonove zapojenie
Zosilnenie tranzistora môžeme zväčšiť zapojením do darlingtona. Vtedy sa prúdové zosilnenia násobia: hfe1 x hfe2 !!
Pri takom obrovskom prúdovom zosilnení môžeme slaboprúdovým obvodom (napr. jednočipový mikroprocesor) spínať veľké prúdy, lebo takto môžeme spojiť citlivý slabý tranzistor so silným výkonovým.
Nevýhoda je, že sa pri tomto sčítava bias, alebo necitlivosť a tiež fázový posun pri vyšších frekvenciách (~180° miesto ~90°), takže keď ho zaväzbíme, čo často treba, tak môže byť taký obvod nestabilný.
Dnes už nemá taký veľký zmysel pre spínacie aplikácie, lebo stačí zobrať výkonový NMOS tranzistor a ten má prúdové zosilnenie skoro nekonečno.
Pre analógové výkonové aplikácie má ale stále zmysel.
Spínač
Hlavnou ulohou spínača je zopnúť v určitom čase a za určitý čas nejaký el. obvod. Ich hlavnou prednosťou je čas zopnutia a rozopnutia - má byť čo najkratší rádovo jednotky ms u spínacích tranzistorov až jednotky ųs. Dalšou vlastnostou je spínací odpor. Má tiež byť čo najmenší v zopnutom stave a čo najväčší v rozopnutom. Dalšia dôležitá vlastnosť je spínací výkon P = I max.2.R prech. alebo P = I max..U prech. Má byť menší ako výkon spínacieho prvku teda tranzistora. Najjednoduchšie použitie tranzistora je spínač. Tu sa používa takmer vždy zapojenie so spoločným emitorom pre vysoké výkonové zosilnenie.
Tranzistory môžeme rozlišovať na základe niekoľkých kategórií:
najviac (~99%) sa dnes používajú kremíkové.
podľa vnútornej štruktúry na: bipolárne, lt JFET, MOSFET, atď…
podľa polarity na: - bipolárne PNP - bipolárne NPN - JFET P-kanálový - JFET N-kanálový
podľa výkonu nízkovýkonové, vysokovýkonové, ...
podľa rýchlosti spínania na nízkofrekvenčné, vysokofrekvenčné,...
podľa usporiadania kontaktov na laterálne (usporiadanie kontaktov v jednej rovine, z jednej strany substrátu) a vertikálne (napriklad u DMOS,Trench-MOS, IGBT, drainovy (kolektorovy) kontakt je zo spodnej strany substratu, emitor a hradlo z hornej strany substrátu). Vertikálne usporiadanie umožňuje väčšiu integráciu a vyššie prúdové zaťaženie.
Vlastnosti tranzistora sa dosť výrazne menia podľa pracovnej frekvencie. Pri návrhu vysokofrekvenčných obvodov s tranzistormi musíme rátať s tým, že:
Zosilnenie je menšie ako pri malých frekvenciách
Vstupný signál je rušený výstupnym signálom (hlavne pri zapojení so spoločným emitorom, pri spoločnej báze rádove menej). To je pri bipolárnych spôsobené kapacitou prechodu CB, keďže je to dióda v závernom smere a to je kondenzátor
Princíp bipolárneho tranzistora
Pri napätí medzi kolektorom a emitorom (Vcc na C a nula alebo mínus na E) je prechod BE priepustný a CB je nepriepustný. Takže medzi CE nemôže prejsť nijaký prúd, lebo otvorené musia byť obidva. V skutočnosti prechádza malý zvyškový prúd, ale ten je obyčajne rádovo v nanoampéroch.
Keď ale privedieme na B napätie a cez BE začne prechádzať prúd, tento vyplní P-časť elektrónmi a tento už nie je čistý P ale má odrazu aj N-nosiče (elektróny), ktoré vytvoria malú cestičku pre elektróny z kolektora. Tie sa začnú doslova hrnúť do bázy a tam sú už v priepustnom smere a letia do emitora. Tu hovoríme, že tranzistor sa začína otvárať.
Pri kremíkových tranzistoroch treba na otvorenie 0,5 V až 0,7 V na prechode BE. Pri germániových okolo 0,25 V.
Lenže teraz je v báze ešte viac elektrónov, ktoré túto cestičku ešte zväčšujú. To znamená ešte viac elektrónov ktoré unikajú z kolektora do bázy a toto celé sa opakuje a vzniká takto lavína. Po čase sa táto cestička (pri rovnakom prúde z bázy) prestane zväčšovať a prúd z kolektora zostane konštantný, ale stále mnohokrát väčší ako bázový – pomer C-prúdu a B-prúdu sa nazýva zosilnenie tranzistora. Toto zosilnenie sa môže meniť s bázovým prúdom(=nelinearita), ale výraznejšie len pri malých bázových prúdoch alebo naopak pri velmi veľkých (v saturačnej oblasti).
Keď prúd na báze vypneme, chvíľu ešte trvá, kým elektróny z bázy odtečú do emitora a cestička sa uzavrie. To preto, lebo elektróny z kolektora ešte chvíľu cestičku zásobujú. Toto uzavretie trvá podľa toho, aký široký je CB-prechod. Preto sú vysokovýkonové tranzistory pomalšie ako malovýkonové. Hlavne pri veľkých napätiach medzi CE.
Pri veľkých bázových prúdoch sa už báza správa ako N-polovodič, z tranzistora sa stane akoby jeden N-blok, t. j. úplne sa otvorí. Keď aj vtedy zvyšujeme bázový prúd, C-prúd sa už nezvyšuje, toto voláme saturácia. Saturovanému tranzistoru trvá dlhšie, kým sa vypne a preto sa pri VF obvodoch pridáva do tranzistora na CB-prechod paralelne tzv. antisaturačná dióda.
Pri plnom zopnutí je napätie na C oproti E skoro nulové, tzv. zvyškové napätie. To je ale len najviac milivolty. Hovoríme, že sme NPN pripli do nuly.
Pri PNP je to rovnaké, len musíme prehodiť plusové napätia za mínusové (nulové) a opačne.
Princíp unipolárneho tranzistra
Ak máme substrát P a elektródy (S a D) N, medzi ktorými je P substrát, tak je tento tranzistor normálne nevodivý. Ale nad substrátom je elektróda G. Na tú keď privedieme kladné napätie, tak k nej pritiahneme elektróny a zo substrátu P sa v blízkosti elektródy vytvorí N. Tak vznikne medzi S a D most a tranzistor je otvorený.
Dôležitá je izolačná vrstva medzi hradlovou elektródou a substrátom.
Keď ale hradlo odpojíme, tento most ešte dlho ostane (rádove sekundy, pri diskrétnych výkonových ešte dlhšie). Keď ho chceme vypnúť, musíme hradlo pripnúť na nulu (alebo vyrovnať s D). Toto sa využívalo v niektorých pamätiach. Príčinou je kapacita medzi hradlom a S a D. Táto kapacita tiež obmedzuje rýchlosť spínania na tranzistore, lebo pri väčších frekv. sa samozrejme správa ako skrat.